BookSee.org
Booksee.org
Главная

Global surgery formula for the Casson-Walker invariant

Обложка книги Global surgery formula for the Casson-Walker invariant

Global surgery formula for the Casson-Walker invariant

This book presents a new result in 3-dimensional topology. It is well known that any closed oriented 3-manifold can be obtained by surgery on a framed link in S3. In Global Surgery Formula for the Casson-Walker Invariant, a function F of framed links in S3 is described, and it is proven that F consistently defines an invariant, lamda (l), of closed oriented 3-manifolds. l is then expressed in terms of previously known invariants of 3-manifolds. For integral homology spheres, l is the invariant introduced by Casson in 1985, which allowed him to solve old and famous questions in 3-dimensional topology. l becomes simpler as the first Betti number increases.

As an explicit function of Alexander polynomials and surgery coefficients of framed links, the function F extends in a natural way to framed links in rational homology spheres. It is proven that F describes the variation of l under any surgery starting from a rational homology sphere. Thus F yields a global surgery formula for the Casson invariant.

Ссылка удалена правообладателем
----
The book removed at the request of the copyright holder.
Популярные книги за неделю:
Только что пользователи скачали эти книги: